Post

#15. 3Sum

#15. 3Sum
  • Solved

Description


Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.

Notice that the solution set must not contain duplicate triplets.

Example 1:

Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not matter.

Example 2:

Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.

Example 3:

Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The only possible triplet sums up to 0.

Constraints:

  • 3 <= nums.length <= 3000
  • -105 <= nums[i] <= 105

My Solution


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
public class Solution {
    public IList<IList<int>> ThreeSum(int[] nums) {
        Array.Sort(nums);
        List<IList<int>> result = new List<IList<int>>();
        for(int i = 0; i < nums.Length -2; i++) {
            if(i > 0 && nums[i] == nums[i-1]) {
                continue;
            }
            for(int j = i + 1; j < nums.Length -1; j++) {
                if(j > i + 1 && nums[j] == nums[j-1]) {
                    continue;
                }
                for(int k = j + 1; k < nums.Length; k++) {
                    if(k > j + 1 && nums[k] == nums[k-1])
                        continue;
                    if(nums[i] + nums[j] + nums[k] == 0) {
                        result.Add(new List<int>() {nums[i], nums[j], nums[k]});
                    }
                }
            }
        }

        return result;
    }
}

Runtime

Time Limit Exceeded

Memory

Time Limit Exceeded

Big O Notation

Time complexity: O(n^3)
Space complexity: O(n)

Reflection

Because of Time Complexity of O(n^3), I could not submit this solution. This question is categorized with ‘Two Pointers’. I have to find the way use just 2 pointers not 3 pointers.

Best Solution


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public class Solution {
    public IList<IList<int>> ThreeSum(int[] nums) {
        List<IList<int>> result = new List<IList<int>>();
        Array.Sort(nums);

        for (int i = 0; i < nums.Length; i++) {
            if (i > 0 && nums[i] == nums[i-1]) {
                continue;
            }
            
            int j = i + 1;
            int k = nums.Length - 1;

            while (j < k) {
                int total = nums[i] + nums[j] + nums[k];

                if (total > 0) {
                    k--;
                } else if (total < 0) {
                    j++;
                } else {
                    result.Add(new List<int>() {nums[i], nums[j], nums[k]});
                    j++;

                    while (nums[j] == nums[j-1] && j < k) {
                        j++;
                    }
                }
            }
        }

        return result;
    }
}

Runtime

26 ms / Beats 94.09%

Memory

74.92 MB / Beats 86.48%

Big O Notation

Time complexity: O(n^2)
Space complexity: O(n)

This post is licensed under CC BY 4.0 by the author.